1. Programming Foundations
- Python / R basics
- Java for Data Science & OOP Concepts
- Data structures & algorithms
- Version control (Git, GitHub)
2. Mathematics & Statistics
- Linear Algebra
- Probability & Statistics
- Calculus basics for ML
3. Data Handling
- Data cleaning & preprocessing
- Pandas & NumPy
- Data visualization (Matplotlib, Seaborn)
4. Machine Learning
- Supervised vs Unsupervised Learning
- Regression & Classification
- Clustering & Dimensionality Reduction
- Model evaluation & validation
5. Deep Learning
- Neural Networks fundamentals
- TensorFlow / PyTorch
- CNNs, RNNs, Transformers
6. Data Engineering & Tools
- SQL & Databases
- Big Data (Hadoop, Spark)
- Cloud Platforms (AWS, GCP, Azure)
7. Projects & Deployment
- Real-world datasets
- APIs & Flask/Django
- Model deployment (Docker, Streamlit, FastAPI)